

LAMMC

1

AND FORESTRY

Abiotic Stress Response in Ryegrasses: Old Problems and New Opportunities

Kristina Jaškūnė

"EditGrass4Food»

is financially supported by European Economic Area (EEA) grants

Lolium perenne origin and diversity

476 natural populations from genebanks

Natural populations maintain a wide genomic variability at continental scale that has been minimally exploited by modern plant breeding activities. This variability constitutes valuable standing genetic variation for future adaptation of grasslands to climate change, safeguarding the agricultural services they provide.

Blanco-Pastor et al. J Biogeogr. 2019

The locations of origin and the distribution of freezing tolerance among wild-growing perennial ryegrass populations

A. Aleliūnas, PhD thesis 2017

Diploid vs Tetraploid

-2x - 4x-5 -6 -7 LT₅₀ -8 -9 -10 Populations

Variation of the freezing tolerance within the perennial ryegrass population panel. The dashed line represents median LT_{50} value.

```
A. Aleliūnas, 2017 PhD thesis
```


-5 Ploidy • 2x • 4x -6 -7 LT₅₀ -8 **—** Ţ≖Į -9 ------10 Salamandra SW Birger SW Irene SW Svea SW Gunne Premium SW Leia Pionero Fagerlin Arvicola Spidola Norlea Riikka Arvella Trygve Ivana Cavia Raite Fjaler Raidi Einar Falk Cultivars

Freezing tolerance of the 22 tested perennial ryegrass cultivars

A. Helgadottir et al, J Agro Crop Sci. 2018;204:493–504.

Spearman rank correlation between electrolyte leakage (EL), percentage of tiller survival (PTS), cold-acclimated plant proline content (PC) and field winter survival (FWS)

Trait	EL -8 °C	EL -12 °C	PTS -8 °C	PTS -12 °C	PC
EL -8 °C (%)	-				_
EL -12 °C (%) PTS -8 °C (%)	0.49***	- -0.15 NS	-		
PTS -12 °C (%)	-0.17 NS	-0.47***	0.41***	-	
PC (µg g ⁻¹)	-0.15 NS	-0.03 NS	-0.12 NS	0.05 NS	-
FWS (score)	-0.20 NS	-0.47***	-0.06 NS	-0.003 NS	0.02 NS

A. Aleliūnas, Euphytica 2015

LAMMC

Winterkill and drought damage of perennial ryegrass, 2015–2016

Trait	Ploidy group	Winter kill 2015	Winter kill 2016	Drought damage 2015
Mean	diploid	1.12	3.19	4.87
	tetraploid	1.09	2.90	4.05
Min	diploid	1.00	2.00	2.00
	tetraploid	1.00	2.00	2.00
	diploid	5.00	8.50	8.50
Max	tetraploid	2.50	6.00	8.50

Kemesyte et al Crop Sci. 57:1–6 (2017)

Abiotic stresses: drought resistance

Phenotyping platform for chronological profiling of the leaf elongation rate (LER), the soil water potential and micrometeorological variables.

Yates et al Front. Plant Sci., 2019

Leaf elongation rate in response to mild drought

2 -1 -

0

For

0

decrease trait on genomic scaffolds

Scaffold	Position	Gene prediction (blastn)	Location	Scaffold position in barley genome	GWAS method	SNP effect	MAF	P-value	<i>P</i> -values FDR	<i>P</i> -values (Bonferron correction
scaffold_20866 ref0045961	1878	Transcription factor MYB41 (XM_003573090.4)	Outside gene (708 bp)	Hv_chr6H	FarmCPU	-0.548	0.091	4.19E-07	0.009	0.009
					BLINK	NA	0.091	4.15E-07	0.009	NA
					MLMM	NA	0.091	8.16E-07	0.009	0.018
scaffold_4484 ref0039062	32616	Phytochrome B (XM_020328926.1)	Intron	Hv_chr4H	FarmCPU	0.739	0.054	1.79E-07	0.019	0.039

L. multiflorum ssp. Italicum Italian ryegrass

The total dry matter yield over the period of 2009 – 2022

Winter period average temperature and total precipitation during 1^{st} cut growth period had a significant effect on the 1^{st} cut DMY (R² = 0.51)

L. multiflorum ssp. multiflorum Westerwold ryegrass

O. K. Akinroluyo PhD thesis, 2019

Dffhmætter piælddiet værete dig (A) i dædlaiveira (126) activityd (189 dfælipalpldids cultivars (DC) and induce (117) trapleidiæ (1411) riefter 5 days of mild drought

Regrowth after severe drought

LAMMC

Drought?

Water logging?

Heat?

Thank you

